Title |
Associate Professor |
Researcher Number(JSPS Kakenhi) |
50893864 |
Uehara Kazuki
|
|
Current Affiliation Organization 【 display / non-display 】
-
Duty University of the Ryukyus Faculty of Global and Regional Studies Associate Professor
University 【 display / non-display 】
-
2006.04-2011.03
University of the Ryukyus Faculty of Engineering Graduated
Graduate School 【 display / non-display 】
-
2011.04-2013.03
University of the Ryukyus Graduate School, Division of Science and Engineering Doctor's Course (first term) Completed
-
2013.04-2016.03
University of the Ryukyus Graduate School, Division of Science and Engineering Doctor's Course (second term) Completed
External Career 【 display / non-display 】
-
2016.05-2021.03
National Institute of Advanced Industrial Science and Technology (AIST)
-
2021.04-2023.03
National Institute of Advanced Industrial Science and Technology (AIST)
-
2023.04
University of the Ryukyus
-
2023.10
Research Interests 【 display / non-display 】
-
Human-AI Cooperation
-
Artificial Intelligence
-
Computer vision
Research Areas 【 display / non-display 】
-
Informatics / Intelligent informatics
Published Papers 【 display / non-display 】
-
Ensemble Distillation of Divergent Opinions for Robust Pathological Image Classification
Kazuki Uehara, Wataru Uegami, Hirokazu Nosato, Masahiro Murakawa, Junya Fukuoka, Hidenori Sakanashi
2024 46th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2024.07 [ Peer Review Accepted ]
Type of publication: Research paper (international conference proceedings)
-
MSAA-Net: Multi-Scale Attention Assembler Network Based on Multiple Instance Learning for Pathological Image Analysis
Takeshi Yoshida, Kazuki Uehara, Hidenori Sakanashi, Hirokazu Nosato, Masahiro Murakawa
Pattern Recognition Applications and Methods ( Springer Cham ) 14547 49 - 68 2024.02 [ Peer Review Accepted ]
Type of publication: Research paper (scientific journal)
-
Access this article
-
-
Evidence Dictionary Network Using Multiple Instance Contrastive Learning for Explainable Pathological Image Analysis
Kazuki Uehara, Wataru Uegami, Hirokazu Nosato, Masahiro Murakawa, Junya Fukuoka, Hidenori Sakanashi
2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) ( IEEE ) 1 - 5 2023.09 [ Peer Review Accepted ]
Type of publication: Research paper (international conference proceedings)
-
Multi-Scale Feature Aggregation Based Multiple Instance Learning for Pathological Image Classification
Takeshi Yoshida, Kazuki Uehara, Hidenori Sakanashi, Hirokazu Nosato, Masahiro Murakawa
Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods ( SCITEPRESS - Science and Technology Publications ) 619 - 628 2023 [ Peer Review Accepted ]
Type of publication: Research paper (international conference proceedings)
-
Access this article
-
-
Explainable Deep Feature Embedding Using Multiple Instance Learning for Pathological Image Analysis
Kazuki Uehara, Wataru Uegami, Hirokazu Nosato, Masahiro Murakawa, Junya Fukuoka, Hidenori Sakanashi
Proceedings of the AAAI 2022 Spring Symposium on Machine Learning and Knowledge Engineering for Hybrid Intelligence (AAAI-MAKE 2022) 3121 1 - 14 2022.04 [ Peer Review Accepted ]
Type of publication: Research paper (international conference proceedings)
Presentations 【 display / non-display 】
-
人と人工知能の協働による医療診断支援技術の開発
上原和樹
人工知能学会 第132回 知識ベースシステム研究会 2024.08 - 2024.08
-
Ensemble Distillation of Divergent Opinions for Robust Pathological Image Classification
Kazuki Uehara, Wataru Uegami, Hirokazu Nosato, Masahiro Murakawa, Junya Fukuoka, Hidenori Sakanashi
the 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2024.07 - 2024.07
-
Evidence Dictionary Network Using Multiple Instance Contrastive Learning For Explainable Pathological Image Analysis
Kazuki Uehara, Wataru Uegami, Hirokazu Nosato, Murakawa Masahiro, Junya Fukuoka, Hidenori Sakanashi
the 20th IEEE International Symposium on Biomedical Imaging. ISBI 2023 2023.04 - 2023.04
-
Multi-Scale Feature Aggregation Based Multiple Instance Learning for Pathological Image Classification
Takeshi Yoshida, Kazuki Uehara, Hidenori Sakanashi, Hirokazu Nosato, Masahiro Murakawa
12th International Conference on Pattern Recognition Applications and Methods 2023.02 - 2023.02
-
Explainable Deep Feature Embedding Using Multiple Instance Learning for Pathological Image Analysis
Kazuki Uehara, Wataru Uegami, Hirokazu Nosato, Masahiro Murakawa, Junya Fukuoka, Hidenori Sakanashi
AAAI 2022 Spring Symposium on Machine Learning and Knowledge Engineering for Hybrid Intelligence (AAAI-MAKE 2022) 2022.03 - 2022.03